
COSI 167A: Advanced Data Systems
Fall 2024

Systems Project

COSI 167A - Fall 2024 - System Project
Title: Implementing an LSM-Based Key-Value Store

Background
Log-structured merge-trees (LSM-trees) [1, 2, 3] are one of the most commonly used data
structures for persistent storage of key-value entries. LSM-based storages are in use in sev-
eral modern key-value stores including RocksDB at Meta, LevelDB and BigTable at Google,
Cassandra and HBase at Apache, and so on. LSM-trees store data in the disk as immutable
logs (also known as sorted sequence tables (SSTs)), which are maintained in hierarchical levels
of increasing capacity. To bound the number of logs that a lookup has to probe, LSM-trees
merge logs of similar sizes. The two possible merging strategies are (i) leveling (optimized for
lookups) and (ii) tiering (optimized for updates).

Objective
The objective of the project is to implement an LSM-tree using only a single process thread.
Review the LSM-tree literature to understand the principles and operations supported in an
LSM-tree. Implement a vanilla LSM-tree for both merging strategies – leveling and tiering.

Language of Implementation. It is strongly suggested that you use C/C++ to do your im-
plementation if you are familiar with the languages. If you are unfamiliar with C/C++, but
want to learn it while working on the project, you can find some under Useful Resources in the
projects page. If neither of the above is suitable for you, you may implement the project in Java.

Workflow. If you are implementing the project in C/C++, click on this link. If you plan to
implement in Java, click here. The general workflow for the project is as follows.

1. Once you clone the repository and navigate into it, you will find a basic implementation
of TemplateDB, which includes the DB, BloomFilter, and Operations compo-
nents. These will serve as the foundation for building an LSM-based key-value datas-
tore. Your task is to build an LSM-based key-value datastore on top of this TemplateDB
implementation. Before starting, ensure you thoroughly review the README file. You
are free to modify certain components to fit your specific implementation approach.

2. For leveling, make sure your data at each level is stored and stored in multiple files to
facilitate partial compactions. Similarly, for tiering, each tier should comprise of multiple
files. Alternatively, you can implement compaction by maintaining a single sorted run
(or one SST file) at each level for leveling, and during compaction, merge all data from
level i with level i + 1. For tiering, store each tier as a single sorted run, and whenever
level i accumulates T runs, sort-merge them and write a single run to the next level.
(note: Although we do not expect you to implement partial compaction in the leveled
LSM-tree, you are welcome to do so.)

3. The creation of Bloom filters may vary depending on your implementation. If all data
is kept in a single file at each level, only one Bloom filter per level may be enough.

COSI 167A | Systems Project 1

https://ssd-brandeis.github.io/COSI-167A/assignments/
https://github.com/SSD-Brandeis/LSMTree-DataStore-CPP
https://github.com/SSD-Brandeis/LSMTree-DataStore-Java


COSI 167A: Advanced Data Systems
Fall 2024

Systems Project

However, if the data is stored in multiple files, a Bloom filter will be required for each
file to support partial compactions.

4. Fence pointers (or zone maps) are expected to be maintained at the granularity of pages.

5. Your LSM-tree implementation should support insert, update, and deletion of key along
with point and range queries.
(Note: The output of range queries must be sorted. You are not allowed to store inter-
mediate results from all levels in a large vector and then sort them together. Instead, you
need to implement a merge process for several iterators across different runs to avoid
unnecessary space amplification.)

6. Make sure to report all necessary performance numbers after executing a workload.

Do NOT upload your code to public repositories, such as GitHub and Bitbucket.

References
[1] Chen Luo, Michael J. Carey. LSM-based storage techniques: a survey. VLDB J. 29(1):

393-418 (2020). DOI: https://doi.org/10.48550/arXiv.1812.07527.

[2] Niv Dayan, Manos Athanassoulis, Stratos Idreos. Monkey: Optimal Navigable Key-Value
Store. SIGMOD Conference 2017: 79-94. DOI: https://doi.org/10.1145/3035918.3064054.

[3] Patrick E. O’Neil, Edward Cheng, Dieter Gawlick, Elizabeth J. O’Neil. The Log-Structured
Merge-Tree (LSM-Tree). Acta Inf. 33(4): 351-385 (1996).
DOI: https://doi.org/10.1007/s002360050048.

2 COSI 167A | Systems Project


